Attacks that inject malicious content into model inputs
Large Language Models (LLMs) are vulnerable to a jailbreak attack termed Paper Summary Attack (PSA). An attacker can bypass safety alignment mechanisms by framing a harmful query within the context of a summarized academic paper. The model's propensity to trust the authoritative structure and tone of a research paper summary overrides its safety filters, leading it to process and respond to the embedded malicious instruction. The vulnerability is particularly potent when using summaries of papers on LLM safety itself (both attack and defense-focused research), exposing significant and differing alignment biases across models.
Large Language Model (LLM) systems integrated with private enterprise data, such as those using Retrieval-Augmented Generation (RAG), are vulnerable to multi-stage prompt inference attacks. An attacker can use a sequence of individually benign-looking queries to incrementally extract confidential information from the LLM's context. Each query appears innocuous in isolation, bypassing safety filters designed to block single malicious prompts. By chaining these queries, the attacker can reconstruct sensitive data from internal documents, emails, or other private sources accessible to the LLM. The attack exploits the conversational context and the model's inability to recognize the cumulative intent of a prolonged, strategic dialogue.
A vulnerability exists in Large Language Models, including GPT-3.5 and GPT-4, where safety guardrails can be bypassed using Trojanized prompt chains within a simulated educational context. An attacker can establish a benign, pedagogical persona (e.g., a curious student) over a multi-turn dialogue. This initial context is then exploited to escalate the conversation toward requests for harmful or restricted information, which the model provides because the session's context is perceived as safe. The vulnerability stems from the moderation system's failure to detect semantic escalation and topic drift within an established conversational context. Two primary methods were identified: Simulated Child Confusion (SCC), which uses a naive persona to ask for dangerous information under a moral frame (e.g., "what not to do"), and Prompt Chain Escalation via Literary Devices (PCELD), which frames harmful concepts as an academic exercise in satire or metaphor.
Large Language Models (LLMs) are vulnerable to jailbreaking through an agentic attack framework called Composition of Principles (CoP). This technique uses an attacker LLM (Red-Teaming Agent) to dynamically select and combine multiple human-defined, high-level transformations ("principles") into a single, sophisticated prompt. The composition of several simple principles, such as expanding context, rephrasing, and inserting specific phrases, creates complex adversarial prompts that can bypass safety and alignment mechanisms designed to block single-tactic or more direct harmful requests. This allows an attacker to elicit policy-violating or harmful content in a single turn.
A hybrid jailbreak attack, combining gradient-guided token optimization (GCG) with iterative prompt refinement (PAIR or WordGame+), bypasses LLM safety mechanisms resulting in the generation of disallowed content. The hybrid approach leverages the strengths of both techniques, circumventing defenses effective against single-mode attacks. Specifically, the combination of semantically crafted prompts and strategically placed adversarial tokens confuse and overwhelm existing defenses.
Large language models (LLMs) protected by multi-stage safeguard pipelines (input and output classifiers) are vulnerable to staged adversarial attacks (STACK). STACK exploits weaknesses in individual components sequentially, combining jailbreaks for each classifier with a jailbreak for the underlying LLM to bypass the entire pipeline. Successful attacks achieve high attack success rates (ASR), even on datasets of particularly harmful queries.
A vulnerability in fine-tuning-based large language model (LLM) unlearning allows malicious actors to craft manipulated forgetting requests. By subtly increasing the frequency of common benign tokens within the forgetting data, the attacker can cause the unlearned model to exhibit unintended unlearning behaviors when these benign tokens appear in normal user prompts, leading to a degradation of model utility for legitimate users. This occurs because existing unlearning methods fail to effectively distinguish between benign tokens and those truly related to the target knowledge being unlearned.
Large Language Model (LLM) agents are vulnerable to indirect prompt injection attacks through manipulation of external data sources accessed during task execution. Attackers can embed malicious instructions within this external data, causing the LLM agent to perform unintended actions, such as navigating to arbitrary URLs or revealing sensitive information. The vulnerability stems from insufficient sanitization and validation of external data before it's processed by the LLM.
Multimodal large language models (MLLMs) are vulnerable to implicit jailbreak attacks that leverage least significant bit (LSB) steganography to conceal malicious instructions within images. These instructions are coupled with seemingly benign image-related text prompts, causing the MLLM to execute the hidden malicious instructions. The attack bypasses existing safety mechanisms by exploiting cross-modal reasoning capabilities.
Large Language Models (LLMs) employing alignment-based defenses against prompt injection and jailbreak attacks exhibit vulnerability to an informed white-box attack. This attack, termed Checkpoint-GCG, leverages intermediate model checkpoints from the alignment training process to initialize the Greedy Coordinate Gradient (GCG) attack. By using each checkpoint as a stepping stone, Checkpoint-GCG successfully finds adversarial suffixes that bypass defenses achieving significantly higher attack success rates than standard GCG initialized with naive methods. This is particularly impactful as Checkpoint-GCG can discover universal adversarial suffixes effective across multiple inputs.
© 2025 Promptfoo. All rights reserved.