Python assertions
The python
assertion allows you to provide a custom Python function to validate the LLM output.
A variable named output
is injected into the context. The function should return true
if the output passes the assertion, and false
otherwise. If the function returns a number, it will be treated as a score.
Example:
assert:
- type: python
value: output[5:10] == 'Hello'
You may also return a number, which will be treated as a score:
assert:
- type: python
value: math.log10(len(output)) * 10
Multiline functions
Python assertions support multiline strings:
assert:
- type: python
value: |
# Insert your scoring logic here...
if output == 'Expected output':
return {
'pass': True,
'score': 0.5,
}
return {
'pass': False,
'score': 0,
}
Using test context
A context
object is available in the Python function. Here is its type definition:
from typing import Any, Dict, TypedDict, Union
class AssertContext(TypedDict):
prompt: str
vars: Dict[str, str]
test: Dict[str, Any] # Contains keys like "vars", "assert", "options"
For example, if the test case has a var example
, access it in Python like this:
tests:
- description: 'Test with context'
vars:
example: 'Example text'
assert:
- type: python
value: 'context['vars']['example'] in output'
External .py
To reference an external file, use the file://
prefix:
assert:
- type: python
value: file://relative/path/to/script.py
config:
outputLengthLimit: 10
You can specify a particular function to use by appending it after a colon:
assert:
- type: python
value: file://relative/path/to/script.py:custom_assert
If no function is specified, it defaults to get_assert
.
This file will be called with an output
string and an AssertContext
object (see above).
It expects that either a bool
(pass/fail), float
(score), or GradingResult
will be returned.
Here's an example assert.py
:
from typing import Dict, TypedDict, Union
# Default function name
def get_assert(output: str, context) -> Union[bool, float, Dict[str, Any]]:
print('Prompt:', context['prompt'])
print('Vars', context['vars']['topic'])
# This return is an example GradingResult dict
return {
'pass': True,
'score': 0.6,
'reason': 'Looks good to me',
}
# Custom function name
def custom_assert(output: str, context) -> Union[bool, float, Dict[str, Any]]:
return len(output) > 10
This is an example of an assertion that uses data from a configuration defined in the assertion's YML file:
from typing import Dict, Union
def get_assert(output: str, context) -> Union[bool, float, Dict[str, Any]]:
return output.length() <= context.get('config', {}).get('outputLengthLimit', 0)
You can also return nested metrics and assertions via a GradingResult
object:
{
'pass': True,
'score': 0.75,
'reason': 'Looks good to me',
'componentResults': [{
'pass': 'bananas' in output.lower(),
'score': 0.5,
'reason': 'Contains banana',
}, {
'pass': 'yellow' in output.lower(),
'score': 0.5,
'reason': 'Contains yellow',
}]
}
GradingResult types
Here's a Python type definition you can use for the GradingResult
object:
@dataclass
class GradingResult:
pass_: bool # 'pass' is a reserved keyword in Python
score: float
reason: str
component_results: Optional[List['GradingResult']] = None
named_scores: Optional[Dict[str, float]] = None # Appear as metrics in the UI
Overriding the Python binary
By default, promptfoo will run python
in your shell. Make sure python
points to the appropriate executable.
If a python
binary is not present, you will see a "python: command not found" error.
To override the Python binary, set the PROMPTFOO_PYTHON
environment variable. You may set it to a path (such as /path/to/python3.11
) or just an executable in your PATH (such as python3.11
).
Other assertion types
For more info on assertions, see Test assertions.