Skip to main content

Bedrock

The bedrock lets you use Amazon Bedrock in your evals. This is a common way to access Anthropic's Claude, Meta's Llama 3.1, AI21's Jamba, and other models. The complete list of available models can be found here.

Setup

  1. Ensure you have access to the desired models under the Providers page in Amazon Bedrock.

  2. Install @aws-sdk/client-bedrock-runtime:

    npm install -g @aws-sdk/client-bedrock-runtime
  3. The AWS SDK will automatically pull credentials from the following locations:

    • IAM roles on EC2
    • ~/.aws/credentials
    • AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY environment variables

    See setting node.js credentials (AWS) for more details.

  4. Edit your configuration file to point to the AWS Bedrock provider. Here's an example:

    providers:
    - id: bedrock:anthropic.claude-3-5-sonnet-20241022-v2:0

    Note that the provider is bedrock: followed by the ARN/model id of the model.

  5. Additional config parameters are passed like so:

    providers:
    - id: bedrock:anthropic.claude-3-5-sonnet-20241022-v2:0
    config:
    accessKeyId: YOUR_ACCESS_KEY_ID
    secretAccessKey: YOUR_SECRET_ACCESS_KEY
    region: 'us-west-2'
    max_tokens: 256
    temperature: 0.7

Authentication

Configure Amazon Bedrock authentication in your provider's config section using one of these methods:

  1. Access key authentication:
providers:
- id: bedrock:anthropic.claude-3-5-sonnet-20241022-v2:0
config:
accessKeyId: 'YOUR_ACCESS_KEY_ID'
secretAccessKey: 'YOUR_SECRET_ACCESS_KEY'
sessionToken: 'YOUR_SESSION_TOKEN' # Optional
region: 'us-east-1' # Optional, defaults to us-east-1
  1. SSO authentication:
providers:
- id: bedrock:anthropic.claude-3-5-sonnet-20241022-v2:0
config:
profile: 'YOUR_SSO_PROFILE'
region: 'us-east-1' # Optional, defaults to us-east-1

The provider will automatically use AWS SSO credentials when a profile is specified. For access key authentication, both accessKeyId and secretAccessKey are required, while sessionToken is optional.

Example

See Github for full examples of Claude, AI21, Llama 3.1, and Titan model usage.

prompts:
- 'Write a tweet about {{topic}}'

providers:
- id: bedrock:meta.llama3-1-405b-instruct-v1:0
config:
region: 'us-east-1'
temperature: 0.7
max_tokens: 256
- id: bedrock:ai21.jamba-1-5-large-v1:0
config:
region: 'us-east-1'
temperature: 0.7
max_tokens: 256
- id: bedrock:anthropic.claude-3-5-sonnet-20241022-v2:0
config:
region: 'us-east-1'
temperature: 0.7
max_tokens: 256

tests:
- vars:
topic: Our eco-friendly packaging
- vars:
topic: A sneak peek at our secret menu item
- vars:
topic: Behind-the-scenes at our latest photoshoot

Model-specific Configuration

Different models may support different configuration options. Here are some model-specific parameters:

AI21 Models

For AI21 models (e.g., ai21.jamba-1-5-mini-v1:0, ai21.jamba-1-5-large-v1:0), you can use the following configuration options:

config:
max_tokens: 256
temperature: 0.7
top_p: 0.9
frequency_penalty: 0.5
presence_penalty: 0.3

Claude Models

For Claude models (e.g., anthropic.claude-3-5-sonnet-20241022-v2:0), you can use the following configuration options:

config:
max_tokens: 256
temperature: 0.7
anthropic_version: 'bedrock-2023-05-31'
tools: [...] # Optional: Specify available tools
tool_choice: { ... } # Optional: Specify tool choice

Titan Models

For Titan models (e.g., amazon.titan-text-express-v1), you can use the following configuration options:

config:
maxTokenCount: 256
temperature: 0.7
topP: 0.9
stopSequences: ['END']

Llama

For Llama models (e.g., meta.llama3-1-70b-instruct-v1:0), you can use the following configuration options:

config:
max_gen_len: 256
temperature: 0.7
top_p: 0.9

Cohere Models

For Cohere models (e.g., cohere.command-text-v14), you can use the following configuration options:

config:
max_tokens: 256
temperature: 0.7
p: 0.9
k: 0
stop_sequences: ['END']

Mistral Models

For Mistral models (e.g., mistral.mistral-7b-instruct-v0:2), you can use the following configuration options:

config:
max_tokens: 256
temperature: 0.7
top_p: 0.9
top_k: 50

Model-graded tests

You can use Bedrock models to grade outputs. By default, model-graded tests use OpenAI and require the OPENAI_API_KEY environment variable to be set. However, when using AWS Bedrock, you have the option of overriding the grader for model-graded assertions to point to AWS Bedrock or other providers.

Note that because of how model-graded evals are implemented, the LLM grading models must support chat-formatted prompts (except for embedding or classification models).

To set this for all your test cases, add the defaultTest property to your config:

defaultTest:
options:
provider:
id: provider:chat:modelname
config:
temperature: 0
# Other provider config options

You can also do this for individual assertions:

# ...
assert:
- type: llm-rubric
value: Do not mention that you are an AI or chat assistant
provider:
text:
id: provider:chat:modelname
config:
region: us-east-1
temperature: 0
# Other provider config options...

Or for individual tests:

# ...
tests:
- vars:
# ...
options:
provider:
id: provider:chat:modelname
config:
temperature: 0
# Other provider config options
assert:
- type: llm-rubric
value: Do not mention that you are an AI or chat assistant

Embeddings

To override the embeddings provider for all assertions that require embeddings (such as similarity), use defaultTest:

defaultTest:
options:
provider:
embedding:
id: bedrock:embeddings:amazon.titan-embed-text-v2:0
config:
region: us-east-1

Guardrails

To use guardrails, set the guardrailIdentifier and guardrailVersion in the provider config.

For example:

providers:
- id: bedrock:anthropic.claude-3-5-sonnet-20241022-v2:0
config:
guardrailIdentifier: 'test-guardrail'
guardrailVersion: 1 # The version number for the guardrail. The value can also be DRAFT.

Environment Variables

The following environment variables can be used to configure the Bedrock provider:

  • AWS_BEDROCK_REGION: Default region for Bedrock API calls
  • AWS_BEDROCK_MAX_TOKENS: Default maximum number of tokens to generate
  • AWS_BEDROCK_TEMPERATURE: Default temperature for generation
  • AWS_BEDROCK_TOP_P: Default top_p value for generation
  • AWS_BEDROCK_STOP: Default stop sequences (as a JSON string)
  • AWS_BEDROCK_FREQUENCY_PENALTY: Default frequency penalty (for supported models)
  • AWS_BEDROCK_PRESENCE_PENALTY: Default presence penalty (for supported models)

Model-specific environment variables:

  • MISTRAL_MAX_TOKENS, MISTRAL_TEMPERATURE, MISTRAL_TOP_P, MISTRAL_TOP_K: For Mistral models
  • COHERE_TEMPERATURE, COHERE_P, COHERE_K, COHERE_MAX_TOKENS: For Cohere models

These environment variables can be overridden by the configuration specified in the YAML file.