Skip to main content

Azure

The azure provider enables you to use Azure OpenAI Service models with Promptfoo. It shares configuration settings with the OpenAI provider.

Setup​

There are three ways to authenticate with Azure OpenAI:

Option 1: API Key Authentication​

Set the AZURE_API_KEY environment variable and configure your deployment:

providers:
- id: azure:chat:deploymentNameHere
config:
apiHost: 'xxxxxxxx.openai.azure.com'

Option 2: Client Credentials Authentication​

Set the following environment variables or config properties:

  • AZURE_CLIENT_ID / azureClientId
  • AZURE_CLIENT_SECRET / azureClientSecret
  • AZURE_TENANT_ID / azureTenantId

Optionally, you can also set:

Then configure your deployment:

providers:
- id: azure:chat:deploymentNameHere
config:
apiHost: 'xxxxxxxx.openai.azure.com'

Option 3: Azure CLI Authentication​

Authenticate with Azure CLI using az login before running promptfoo. This is the fallback option if the parameters for the previous options are not provided.

Optionally, you can also set:

Then configure your deployment:

providers:
- id: azure:chat:deploymentNameHere
config:
apiHost: 'xxxxxxxx.openai.azure.com'

Provider Types​

  • azure:chat:<deployment name> - For chat endpoints (e.g., gpt-4o, gpt-4o-mini, gpt-4.1, gpt-4.1-mini, gpt-4.1-nano)
  • azure:completion:<deployment name> - For completion endpoints (e.g., gpt-35-turbo-instruct)
  • azure:embedding:<deployment name> - For embedding models (e.g., text-embedding-3-small, text-embedding-3-large)

Vision-capable models (GPT-4o, GPT-4.1) use the standard azure:chat: provider type.

Environment Variables​

The Azure OpenAI provider supports the following environment variables:

Environment VariableConfig KeyDescriptionRequired
AZURE_API_KEYapiKeyYour Azure OpenAI API keyNo*
AZURE_API_HOSTapiHostAPI hostNo
AZURE_API_BASE_URLapiBaseUrlAPI base URLNo
AZURE_BASE_URLapiBaseUrlAlternative API base URLNo
AZURE_DEPLOYMENT_NAME-Default deployment nameYes
AZURE_CLIENT_IDazureClientIdAzure AD application client IDNo*
AZURE_CLIENT_SECRETazureClientSecretAzure AD application client secretNo*
AZURE_TENANT_IDazureTenantIdAzure AD tenant IDNo*
AZURE_AUTHORITY_HOSTazureAuthorityHostAzure AD authority hostNo
AZURE_TOKEN_SCOPEazureTokenScopeAzure AD token scopeNo

* Either AZURE_API_KEY OR the combination of AZURE_CLIENT_ID, AZURE_CLIENT_SECRET, and AZURE_TENANT_ID must be provided.

Note: For API URLs, you only need to set one of AZURE_API_HOST, AZURE_API_BASE_URL, or AZURE_BASE_URL. If multiple are set, the provider will use them in that order of preference.

Default Deployment​

If AZURE_DEPLOYMENT_NAME is set, it will be automatically used as the default deployment when no other provider is configured. This makes Azure OpenAI the default provider when:

  1. No OpenAI API key is present (OPENAI_API_KEY is not set)
  2. Azure authentication is configured (either via API key or client credentials)
  3. AZURE_DEPLOYMENT_NAME is set

For example, if you have these environment variables set:

AZURE_DEPLOYMENT_NAME=gpt-4o
AZURE_API_KEY=your-api-key
AZURE_API_HOST=your-host.openai.azure.com

Or these client credential environment variables:

AZURE_DEPLOYMENT_NAME=gpt-4o
AZURE_CLIENT_ID=your-client-id
AZURE_CLIENT_SECRET=your-client-secret
AZURE_TENANT_ID=your-tenant-id
AZURE_API_HOST=your-host.openai.azure.com

Then Azure OpenAI will be used as the default provider for all operations including:

  • Dataset generation
  • Grading
  • Suggestions
  • Synthesis

Embedding Models​

Because embedding models are distinct from text generation models, to set a default embedding provider you must specify AZURE_OPENAI_EMBEDDING_DEPLOYMENT_NAME.

Set this environment variable to the deployment name of your embedding model:

AZURE_OPENAI_EMBEDDING_DEPLOYMENT_NAME=text-embedding-3-small

This deployment will automatically be used whenever embeddings are required, such as for similarity comparisons or dataset generation. You can also override the embedding provider in your configuration:

promptfooconfig.yaml
defaultTest:
options:
provider:
embedding:
id: azure:embedding:text-embedding-3-small-deployment
config:
apiHost: 'your-resource.openai.azure.com'

Note that any moderation tasks will still use the OpenAI API.

Configuration​

The YAML configuration can override environment variables and set additional parameters:

providers:
- id: azure:chat:deploymentNameHere
config:
apiHost: 'xxxxxxxx.openai.azure.com'
# Authentication (Option 1: API Key)
apiKey: 'your-api-key'

# Authentication (Option 2: Client Credentials)
azureClientId: 'your-azure-client-id'
azureClientSecret: 'your-azure-client-secret'
azureTenantId: 'your-azure-tenant-id'
azureAuthorityHost: 'https://login.microsoftonline.com' # Optional
azureTokenScope: 'https://cognitiveservices.azure.com/.default' # Optional

# OpenAI parameters
temperature: 0.5
max_tokens: 1024
tip

All other OpenAI provider environment variables and configuration properties are supported.

Using Client Credentials​

To use client credentials for authentication with Azure, first install the peer dependency:

npm i @azure/identity

Then set the following configuration variables:

providers:
- id: azure:chat:deploymentNameHere
config:
apiHost: 'xxxxxxxx.openai.azure.com'
azureClientId: 'your-azure-client-id'
azureClientSecret: 'your-azure-client-secret'
azureTenantId: 'your-azure-tenant-id'
azureAuthorityHost: 'https://login.microsoftonline.com' # Optional
azureTokenScope: 'https://cognitiveservices.azure.com/.default' # Optional

These credentials will be used to obtain an access token for the Azure OpenAI API.

The azureAuthorityHost defaults to 'https://login.microsoftonline.com' if not specified. The azureTokenScope defaults to 'https://cognitiveservices.azure.com/.default', the scope required to authenticate with Azure Cognitive Services.

Model-Graded Tests​

Model-graded assertions such as factuality or llm-rubric use gpt-4.1-2025-04-14 by default. When AZURE_DEPLOYMENT_NAME is set (and OPENAI_API_KEY is not), promptfoo automatically uses the specified Azure deployment for grading. You can also explicitly override the grader as shown below.

The easiest way to do this for all your test cases is to add the defaultTest property to your config:

promptfooconfig.yaml
defaultTest:
options:
provider:
id: azure:chat:gpt-4o-deployment
config:
apiHost: 'xxxxxxx.openai.azure.com'

However, you can also do this for individual assertions:

# ...
assert:
- type: llm-rubric
value: Do not mention that you are an AI or chat assistant
provider:
id: azure:chat:xxxx
config:
apiHost: 'xxxxxxx.openai.azure.com'

Or individual tests:

# ...
tests:
- vars:
# ...
options:
provider:
id: azure:chat:xxxx
config:
apiHost: 'xxxxxxx.openai.azure.com'
assert:
- type: llm-rubric
value: Do not mention that you are an AI or chat assistant

Similarity​

The similar assertion type requires an embedding model such as text-embedding-3-large or text-embedding-3-small. Be sure to specify a deployment with an embedding model, not a chat model, when overriding the grader.

For example, override the embedding deployment in your config:

promptfooconfig.yaml
defaultTest:
options:
provider:
embedding:
id: azure:embedding:text-embedding-3-small-deployment
config:
apiHost: 'your-resource.openai.azure.com'

AI Services​

You may also specify deployment_id and dataSources, used to integrate with the Azure AI Search API.

providers:
- id: azure:chat:deploymentNameHere
config:
apiHost: 'xxxxxxxx.openai.azure.com'
deployment_id: 'abc123'
dataSources:
- type: AzureCognitiveSearch
parameters:
endpoint: '...'
key: '...'
indexName: '...'

(The inconsistency in naming convention between deployment_id and dataSources reflects the actual naming in the Azure API.)

Configuration Reference​

These properties can be set under the provider config key:

General Configuration​

NameDescription
apiHostAPI host (e.g., yourresource.openai.azure.com)
apiBaseUrlBase URL of the API (used instead of host)
apiKeyAPI key for authentication
apiVersionAPI version. Use 2024-10-21 or newer for vision support

Azure-Specific Configuration​

NameDescription
azureClientIdAzure identity client ID
azureClientSecretAzure identity client secret
azureTenantIdAzure identity tenant ID
azureAuthorityHostAzure identity authority host
azureTokenScopeAzure identity token scope
deployment_idAzure cognitive services deployment ID
dataSourcesAzure cognitive services parameter for specifying data sources

OpenAI Configuration​

NameDescription
o1Set to true if your Azure deployment uses an o1 model. (Deprecated, use isReasoningModel instead)
isReasoningModelSet to true if your Azure deployment uses a reasoning model (o1, o3, o3-mini, o4-mini). Required for reasoning models
max_completion_tokensMaximum tokens to generate for reasoning models. Only used when isReasoningModel is true
reasoning_effortControls reasoning depth: 'low', 'medium', or 'high'. Only used when isReasoningModel is true
temperatureControls randomness (0-2). Not supported for reasoning models
max_tokensMaximum tokens to generate. Not supported for reasoning models
top_pControls nucleus sampling (0-1)
frequency_penaltyPenalizes repeated tokens (-2 to 2)
presence_penaltyPenalizes new tokens based on presence (-2 to 2)
best_ofGenerates multiple outputs and returns the best
functionsArray of functions available for the model to call
function_callControls how the model calls functions
response_formatSpecifies output format (e.g., { type: "json_object" })
stopArray of sequences where the model will stop generating
passthroughAdditional parameters to send with the request

Using Reasoning Models (o1, o3, o3-mini, o4-mini)​

Azure OpenAI now supports reasoning models like o1, o3, o3-mini, and o4-mini. These models operate differently from standard models with specific requirements:

  1. They use max_completion_tokens instead of max_tokens
  2. They don't support temperature (it's ignored)
  3. They accept a reasoning_effort parameter ('low', 'medium', 'high')

Since Azure allows custom deployment names that don't necessarily reflect the underlying model type, you must explicitly set the isReasoningModel flag to true in your configuration when using reasoning models. This works with both chat and completion endpoints:

# For chat endpoints
providers:
- id: azure:chat:my-o4-mini-deployment
config:
apiHost: 'xxxxxxxx.openai.azure.com'
# Set this flag to true for reasoning models (o1, o3, o3-mini, o4-mini)
isReasoningModel: true
# Use max_completion_tokens instead of max_tokens
max_completion_tokens: 25000
# Optional: Set reasoning effort (default is 'medium')
reasoning_effort: 'medium'

# For completion endpoints
providers:
- id: azure:completion:my-o3-deployment
config:
apiHost: 'xxxxxxxx.openai.azure.com'
isReasoningModel: true
max_completion_tokens: 25000
reasoning_effort: 'high'

Note: The o1 flag is still supported for backward compatibility, but isReasoningModel is preferred as it more clearly indicates its purpose.

Using Variables with Reasoning Effort​

You can use variables in your configuration to dynamically adjust the reasoning effort based on your test cases:

# Configure different reasoning efforts based on test variables
prompts:
- 'Solve this complex math problem: {{problem}}'

providers:
- id: azure:chat:my-o4-mini-deployment
config:
apiHost: 'xxxxxxxx.openai.azure.com'
isReasoningModel: true
max_completion_tokens: 25000
# This will be populated from the test case variables
reasoning_effort: '{{effort_level}}'

tests:
- vars:
problem: 'What is the integral of x²?'
effort_level: 'low'
- vars:
problem: 'Prove the Riemann hypothesis'
effort_level: 'high'

Troubleshooting​

If you encounter this error when using reasoning models:

API response error: unsupported_parameter Unsupported parameter: 'max_tokens' is not supported with this model. Use 'max_completion_tokens' instead.

This means you're using a reasoning model without setting the isReasoningModel flag. Update your config as shown above.

Using Vision Models​

Azure OpenAI supports vision-capable models like GPT-4o and GPT-4.1 for image analysis.

Configuration​

providers:
- id: azure:chat:gpt-4o
config:
apiHost: 'your-resource-name.openai.azure.com'
apiVersion: '2024-10-21' # or newer for vision support

Image Input​

Vision models require a specific message format. Images can be provided as:

  • URLs: Direct image links
  • Local files: Using file:// paths (automatically converted to base64)
  • Base64: Data URIs with format _DATA
prompts:
- |
[
{
"role": "user",
"content": [
{
"type": "text",
"text": "What do you see in this image?"
},
{
"type": "image_url",
"image_url": {
"url": "{{image_url}}"
}
}
]
}
]

tests:
- vars:
image_url: https://example.com/image.jpg # URL
- vars:
image_url: file://assets/image.jpg # Local file (auto base64)
- vars:
image_url: ... # Base64

Example​

See the azure-openai example for a complete working example with image analysis. Use promptfooconfig.vision.yaml for vision-specific features.

Using DeepSeek Models​

Azure AI supports DeepSeek models such as DeepSeek-R1. Like other reasoning models, these require specific configuration:

  1. Set isReasoningModel: true
  2. Use max_completion_tokens instead of max_tokens
  3. Set API version to '2025-04-01-preview' (or latest available)
promptfooconfig.yaml
providers:
- id: azure:chat:DeepSeek-R1
config:
apiHost: 'your-deployment-name.services.ai.azure.com'
apiVersion: '2025-04-01-preview'
isReasoningModel: true
max_completion_tokens: 2048
reasoning_effort: 'medium' # Options: low, medium, high

For model-graded assertions, you can configure your defaultTest to use the same provider:

defaultTest:
options:
provider:
id: azure:chat:DeepSeek-R1
config:
apiHost: 'your-deployment-name.services.ai.azure.com'
apiVersion: '2025-04-01-preview'
isReasoningModel: true
max_completion_tokens: 2048

Adjust reasoning_effort to control response quality vs. speed: low for faster responses, medium for balanced performance (default), or high for more thorough reasoning on complex tasks.

Assistants​

To evaluate an OpenAI assistant on Azure:

  1. Create a deployment for the assistant in the Azure portal
  2. Create an assistant in the Azure web UI
  3. Install the peer dependency:
npm i @azure/openai-assistants
  1. Configure your provider with the assistant ID:
providers:
- id: azure:assistant:asst_E4GyOBYKlnAzMi19SZF2Sn8I
config:
apiHost: yourdeploymentname.openai.azure.com

Replace the assistant ID and deployment name with your actual values.

Function Tools with Assistants​

Azure OpenAI Assistants support custom function tools. You can define functions in your configuration and provide callback implementations to handle them:

providers:
- id: azure:assistant:your_assistant_id
config:
apiHost: your-resource-name.openai.azure.com
# Load function tool definition
tools: file://tools/weather-function.json
# Define function callback inline
functionToolCallbacks:
# Use an external file
get_weather: file://callbacks/weather.js:getWeather
# Or use an inline function
get_weather: |
async function(args) {
try {
const parsedArgs = JSON.parse(args);
const location = parsedArgs.location;
const unit = parsedArgs.unit || 'celsius';
// Function implementation...
return JSON.stringify({
location,
temperature: 22,
unit,
condition: 'sunny'
});
} catch (error) {
return JSON.stringify({ error: String(error) });
}
}

Using Vector Stores with Assistants​

Azure OpenAI Assistants support vector stores for enhanced file search capabilities. To use a vector store:

  1. Create a vector store in the Azure Portal or via the API
  2. Configure your assistant to use it:
providers:
- id: azure:assistant:your_assistant_id
config:
apiHost: your-resource-name.openai.azure.com
# Add tools for file search
tools:
- type: file_search
# Configure vector store IDs
tool_resources:
file_search:
vector_store_ids:
- 'your_vector_store_id'
# Optional parameters
temperature: 1
top_p: 1
apiVersion: '2025-04-01-preview'

Key requirements:

  • Set up a tool with type: file_search
  • Configure the tool_resources.file_search.vector_store_ids array with your vector store IDs
  • Set the appropriate apiVersion (recommended: 2025-04-01-preview or later)

Simple Example​

Here's an example of a simple full assistant eval:

prompts:
- 'Write a tweet about {{topic}}'

providers:
- id: azure:assistant:your_assistant_id
config:
apiHost: your-resource-name.openai.azure.com

tests:
- vars:
topic: bananas

For complete working examples of Azure OpenAI Assistants with various tool configurations, check out the azure-openai-assistant example directory.

See the guide on How to evaluate OpenAI assistants for more information on how to compare different models, instructions, and more.

See Also​