Azure
The azure
provider enables you to use Azure OpenAI Service models with Promptfoo. It shares configuration settings with the OpenAI provider.
Setup​
There are three ways to authenticate with Azure OpenAI:
Option 1: API Key Authentication​
Set the AZURE_API_KEY
environment variable and configure your deployment:
providers:
- id: azure:chat:deploymentNameHere
config:
apiHost: 'xxxxxxxx.openai.azure.com'
Option 2: Client Credentials Authentication​
Set the following environment variables or config properties:
AZURE_CLIENT_ID
/azureClientId
AZURE_CLIENT_SECRET
/azureClientSecret
AZURE_TENANT_ID
/azureTenantId
Optionally, you can also set:
AZURE_AUTHORITY_HOST
/azureAuthorityHost
(defaults to 'https://login.microsoftonline.com')AZURE_TOKEN_SCOPE
/azureTokenScope
(defaults to 'https://cognitiveservices.azure.com/.default')
Then configure your deployment:
providers:
- id: azure:chat:deploymentNameHere
config:
apiHost: 'xxxxxxxx.openai.azure.com'
Option 3: Azure CLI Authentication​
Authenticate with Azure CLI using az login
before running promptfoo. This is the fallback option if the parameters for the previous options are not provided.
Optionally, you can also set:
AZURE_TOKEN_SCOPE
/azureTokenScope
(defaults to 'https://cognitiveservices.azure.com/.default')
Then configure your deployment:
providers:
- id: azure:chat:deploymentNameHere
config:
apiHost: 'xxxxxxxx.openai.azure.com'
Provider Types​
azure:chat:<deployment name>
- For chat endpoints (e.g., gpt-4o, gpt-4o-mini, gpt-4.1, gpt-4.1-mini, gpt-4.1-nano)azure:completion:<deployment name>
- For completion endpoints (e.g., gpt-35-turbo-instruct)azure:embedding:<deployment name>
- For embedding models (e.g., text-embedding-3-small, text-embedding-3-large)
Vision-capable models (GPT-4o, GPT-4.1) use the standard azure:chat:
provider type.
Environment Variables​
The Azure OpenAI provider supports the following environment variables:
Environment Variable | Config Key | Description | Required |
---|---|---|---|
AZURE_API_KEY | apiKey | Your Azure OpenAI API key | No* |
AZURE_API_HOST | apiHost | API host | No |
AZURE_API_BASE_URL | apiBaseUrl | API base URL | No |
AZURE_BASE_URL | apiBaseUrl | Alternative API base URL | No |
AZURE_DEPLOYMENT_NAME | - | Default deployment name | Yes |
AZURE_CLIENT_ID | azureClientId | Azure AD application client ID | No* |
AZURE_CLIENT_SECRET | azureClientSecret | Azure AD application client secret | No* |
AZURE_TENANT_ID | azureTenantId | Azure AD tenant ID | No* |
AZURE_AUTHORITY_HOST | azureAuthorityHost | Azure AD authority host | No |
AZURE_TOKEN_SCOPE | azureTokenScope | Azure AD token scope | No |
* Either AZURE_API_KEY
OR the combination of AZURE_CLIENT_ID
, AZURE_CLIENT_SECRET
, and AZURE_TENANT_ID
must be provided.
Note: For API URLs, you only need to set one of AZURE_API_HOST
, AZURE_API_BASE_URL
, or AZURE_BASE_URL
. If multiple are set, the provider will use them in that order of preference.
Default Deployment​
If AZURE_DEPLOYMENT_NAME
is set, it will be automatically used as the default deployment when no other provider is configured. This makes Azure OpenAI the default provider when:
- No OpenAI API key is present (
OPENAI_API_KEY
is not set) - Azure authentication is configured (either via API key or client credentials)
AZURE_DEPLOYMENT_NAME
is set
For example, if you have these environment variables set:
AZURE_DEPLOYMENT_NAME=gpt-4o
AZURE_API_KEY=your-api-key
AZURE_API_HOST=your-host.openai.azure.com
Or these client credential environment variables:
AZURE_DEPLOYMENT_NAME=gpt-4o
AZURE_CLIENT_ID=your-client-id
AZURE_CLIENT_SECRET=your-client-secret
AZURE_TENANT_ID=your-tenant-id
AZURE_API_HOST=your-host.openai.azure.com
Then Azure OpenAI will be used as the default provider for all operations including:
- Dataset generation
- Grading
- Suggestions
- Synthesis
Embedding Models​
Because embedding models are distinct from text generation models, to set a default embedding provider you must specify AZURE_OPENAI_EMBEDDING_DEPLOYMENT_NAME
.
Set this environment variable to the deployment name of your embedding model:
AZURE_OPENAI_EMBEDDING_DEPLOYMENT_NAME=text-embedding-3-small
This deployment will automatically be used whenever embeddings are required, such as for similarity comparisons or dataset generation. You can also override the embedding provider in your configuration:
defaultTest:
options:
provider:
embedding:
id: azure:embedding:text-embedding-3-small-deployment
config:
apiHost: 'your-resource.openai.azure.com'
Note that any moderation tasks will still use the OpenAI API.
Configuration​
The YAML configuration can override environment variables and set additional parameters:
providers:
- id: azure:chat:deploymentNameHere
config:
apiHost: 'xxxxxxxx.openai.azure.com'
# Authentication (Option 1: API Key)
apiKey: 'your-api-key'
# Authentication (Option 2: Client Credentials)
azureClientId: 'your-azure-client-id'
azureClientSecret: 'your-azure-client-secret'
azureTenantId: 'your-azure-tenant-id'
azureAuthorityHost: 'https://login.microsoftonline.com' # Optional
azureTokenScope: 'https://cognitiveservices.azure.com/.default' # Optional
# OpenAI parameters
temperature: 0.5
max_tokens: 1024
All other OpenAI provider environment variables and configuration properties are supported.
Using Client Credentials​
To use client credentials for authentication with Azure, first install the peer dependency:
npm i @azure/identity
Then set the following configuration variables:
providers:
- id: azure:chat:deploymentNameHere
config:
apiHost: 'xxxxxxxx.openai.azure.com'
azureClientId: 'your-azure-client-id'
azureClientSecret: 'your-azure-client-secret'
azureTenantId: 'your-azure-tenant-id'
azureAuthorityHost: 'https://login.microsoftonline.com' # Optional
azureTokenScope: 'https://cognitiveservices.azure.com/.default' # Optional
These credentials will be used to obtain an access token for the Azure OpenAI API.
The azureAuthorityHost
defaults to 'https://login.microsoftonline.com' if not specified. The azureTokenScope
defaults to 'https://cognitiveservices.azure.com/.default', the scope required to authenticate with Azure Cognitive Services.
Model-Graded Tests​
Model-graded assertions such as factuality
or llm-rubric
use gpt-4.1-2025-04-14
by default. When AZURE_DEPLOYMENT_NAME
is set (and OPENAI_API_KEY
is not), promptfoo automatically uses the specified Azure deployment for grading. You can also explicitly override the grader as shown below.
The easiest way to do this for all your test cases is to add the defaultTest
property to your config:
defaultTest:
options:
provider:
id: azure:chat:gpt-4o-deployment
config:
apiHost: 'xxxxxxx.openai.azure.com'
However, you can also do this for individual assertions:
# ...
assert:
- type: llm-rubric
value: Do not mention that you are an AI or chat assistant
provider:
id: azure:chat:xxxx
config:
apiHost: 'xxxxxxx.openai.azure.com'
Or individual tests:
# ...
tests:
- vars:
# ...
options:
provider:
id: azure:chat:xxxx
config:
apiHost: 'xxxxxxx.openai.azure.com'
assert:
- type: llm-rubric
value: Do not mention that you are an AI or chat assistant
Similarity​
The similar
assertion type requires an embedding model such as text-embedding-3-large
or text-embedding-3-small
. Be sure to specify a deployment with an embedding model, not a chat model, when overriding the grader.
For example, override the embedding deployment in your config:
defaultTest:
options:
provider:
embedding:
id: azure:embedding:text-embedding-3-small-deployment
config:
apiHost: 'your-resource.openai.azure.com'
AI Services​
You may also specify deployment_id
and dataSources
, used to integrate with the Azure AI Search API.
providers:
- id: azure:chat:deploymentNameHere
config:
apiHost: 'xxxxxxxx.openai.azure.com'
deployment_id: 'abc123'
dataSources:
- type: AzureCognitiveSearch
parameters:
endpoint: '...'
key: '...'
indexName: '...'
(The inconsistency in naming convention between deployment_id
and dataSources
reflects the actual naming in the Azure API.)
Configuration Reference​
These properties can be set under the provider config
key:
General Configuration​
Name | Description |
---|---|
apiHost | API host (e.g., yourresource.openai.azure.com ) |
apiBaseUrl | Base URL of the API (used instead of host) |
apiKey | API key for authentication |
apiVersion | API version. Use 2024-10-21 or newer for vision support |
Azure-Specific Configuration​
Name | Description |
---|---|
azureClientId | Azure identity client ID |
azureClientSecret | Azure identity client secret |
azureTenantId | Azure identity tenant ID |
azureAuthorityHost | Azure identity authority host |
azureTokenScope | Azure identity token scope |
deployment_id | Azure cognitive services deployment ID |
dataSources | Azure cognitive services parameter for specifying data sources |
OpenAI Configuration​
Name | Description |
---|---|
o1 | Set to true if your Azure deployment uses an o1 model. (Deprecated, use isReasoningModel instead) |
isReasoningModel | Set to true if your Azure deployment uses a reasoning model (o1, o3, o3-mini, o4-mini). Required for reasoning models |
max_completion_tokens | Maximum tokens to generate for reasoning models. Only used when isReasoningModel is true |
reasoning_effort | Controls reasoning depth: 'low', 'medium', or 'high'. Only used when isReasoningModel is true |
temperature | Controls randomness (0-2). Not supported for reasoning models |
max_tokens | Maximum tokens to generate. Not supported for reasoning models |
top_p | Controls nucleus sampling (0-1) |
frequency_penalty | Penalizes repeated tokens (-2 to 2) |
presence_penalty | Penalizes new tokens based on presence (-2 to 2) |
best_of | Generates multiple outputs and returns the best |
functions | Array of functions available for the model to call |
function_call | Controls how the model calls functions |
response_format | Specifies output format (e.g., { type: "json_object" } ) |
stop | Array of sequences where the model will stop generating |
passthrough | Additional parameters to send with the request |
Using Reasoning Models (o1, o3, o3-mini, o4-mini)​
Azure OpenAI now supports reasoning models like o1
, o3
, o3-mini
, and o4-mini
. These models operate differently from standard models with specific requirements:
- They use
max_completion_tokens
instead ofmax_tokens
- They don't support
temperature
(it's ignored) - They accept a
reasoning_effort
parameter ('low', 'medium', 'high')
Since Azure allows custom deployment names that don't necessarily reflect the underlying model type, you must explicitly set the isReasoningModel
flag to true
in your configuration when using reasoning models. This works with both chat and completion endpoints:
# For chat endpoints
providers:
- id: azure:chat:my-o4-mini-deployment
config:
apiHost: 'xxxxxxxx.openai.azure.com'
# Set this flag to true for reasoning models (o1, o3, o3-mini, o4-mini)
isReasoningModel: true
# Use max_completion_tokens instead of max_tokens
max_completion_tokens: 25000
# Optional: Set reasoning effort (default is 'medium')
reasoning_effort: 'medium'
# For completion endpoints
providers:
- id: azure:completion:my-o3-deployment
config:
apiHost: 'xxxxxxxx.openai.azure.com'
isReasoningModel: true
max_completion_tokens: 25000
reasoning_effort: 'high'
Note: The
o1
flag is still supported for backward compatibility, butisReasoningModel
is preferred as it more clearly indicates its purpose.
Using Variables with Reasoning Effort​
You can use variables in your configuration to dynamically adjust the reasoning effort based on your test cases:
# Configure different reasoning efforts based on test variables
prompts:
- 'Solve this complex math problem: {{problem}}'
providers:
- id: azure:chat:my-o4-mini-deployment
config:
apiHost: 'xxxxxxxx.openai.azure.com'
isReasoningModel: true
max_completion_tokens: 25000
# This will be populated from the test case variables
reasoning_effort: '{{effort_level}}'
tests:
- vars:
problem: 'What is the integral of x²?'
effort_level: 'low'
- vars:
problem: 'Prove the Riemann hypothesis'
effort_level: 'high'
Troubleshooting​
If you encounter this error when using reasoning models:
API response error: unsupported_parameter Unsupported parameter: 'max_tokens' is not supported with this model. Use 'max_completion_tokens' instead.
This means you're using a reasoning model without setting the isReasoningModel
flag. Update your config as shown above.
Using Vision Models​
Azure OpenAI supports vision-capable models like GPT-4o and GPT-4.1 for image analysis.
Configuration​
providers:
- id: azure:chat:gpt-4o
config:
apiHost: 'your-resource-name.openai.azure.com'
apiVersion: '2024-10-21' # or newer for vision support
Image Input​
Vision models require a specific message format. Images can be provided as:
- URLs: Direct image links
- Local files: Using
file://
paths (automatically converted to base64) - Base64: Data URIs with format
_DATA
prompts:
- |
[
{
"role": "user",
"content": [
{
"type": "text",
"text": "What do you see in this image?"
},
{
"type": "image_url",
"image_url": {
"url": "{{image_url}}"
}
}
]
}
]
tests:
- vars:
image_url: https://example.com/image.jpg # URL
- vars:
image_url: file://assets/image.jpg # Local file (auto base64)
- vars:
image_url: ... # Base64
Example​
See the azure-openai example for a complete working example with image analysis. Use promptfooconfig.vision.yaml
for vision-specific features.
Using DeepSeek Models​
Azure AI supports DeepSeek models such as DeepSeek-R1. Like other reasoning models, these require specific configuration:
- Set
isReasoningModel: true
- Use
max_completion_tokens
instead ofmax_tokens
- Set API version to '2025-04-01-preview' (or latest available)
providers:
- id: azure:chat:DeepSeek-R1
config:
apiHost: 'your-deployment-name.services.ai.azure.com'
apiVersion: '2025-04-01-preview'
isReasoningModel: true
max_completion_tokens: 2048
reasoning_effort: 'medium' # Options: low, medium, high
For model-graded assertions, you can configure your defaultTest
to use the same provider:
defaultTest:
options:
provider:
id: azure:chat:DeepSeek-R1
config:
apiHost: 'your-deployment-name.services.ai.azure.com'
apiVersion: '2025-04-01-preview'
isReasoningModel: true
max_completion_tokens: 2048
Adjust reasoning_effort
to control response quality vs. speed: low
for faster responses, medium
for balanced performance (default), or high
for more thorough reasoning on complex tasks.
Assistants​
To evaluate an OpenAI assistant on Azure:
- Create a deployment for the assistant in the Azure portal
- Create an assistant in the Azure web UI
- Install the peer dependency:
npm i @azure/openai-assistants
- Configure your provider with the assistant ID:
providers:
- id: azure:assistant:asst_E4GyOBYKlnAzMi19SZF2Sn8I
config:
apiHost: yourdeploymentname.openai.azure.com
Replace the assistant ID and deployment name with your actual values.
Function Tools with Assistants​
Azure OpenAI Assistants support custom function tools. You can define functions in your configuration and provide callback implementations to handle them:
providers:
- id: azure:assistant:your_assistant_id
config:
apiHost: your-resource-name.openai.azure.com
# Load function tool definition
tools: file://tools/weather-function.json
# Define function callback inline
functionToolCallbacks:
# Use an external file
get_weather: file://callbacks/weather.js:getWeather
# Or use an inline function
get_weather: |
async function(args) {
try {
const parsedArgs = JSON.parse(args);
const location = parsedArgs.location;
const unit = parsedArgs.unit || 'celsius';
// Function implementation...
return JSON.stringify({
location,
temperature: 22,
unit,
condition: 'sunny'
});
} catch (error) {
return JSON.stringify({ error: String(error) });
}
}
Using Vector Stores with Assistants​
Azure OpenAI Assistants support vector stores for enhanced file search capabilities. To use a vector store:
- Create a vector store in the Azure Portal or via the API
- Configure your assistant to use it:
providers:
- id: azure:assistant:your_assistant_id
config:
apiHost: your-resource-name.openai.azure.com
# Add tools for file search
tools:
- type: file_search
# Configure vector store IDs
tool_resources:
file_search:
vector_store_ids:
- 'your_vector_store_id'
# Optional parameters
temperature: 1
top_p: 1
apiVersion: '2025-04-01-preview'
Key requirements:
- Set up a tool with
type: file_search
- Configure the
tool_resources.file_search.vector_store_ids
array with your vector store IDs - Set the appropriate
apiVersion
(recommended:2025-04-01-preview
or later)
Simple Example​
Here's an example of a simple full assistant eval:
prompts:
- 'Write a tweet about {{topic}}'
providers:
- id: azure:assistant:your_assistant_id
config:
apiHost: your-resource-name.openai.azure.com
tests:
- vars:
topic: bananas
For complete working examples of Azure OpenAI Assistants with various tool configurations, check out the azure-openai-assistant example directory.
See the guide on How to evaluate OpenAI assistants for more information on how to compare different models, instructions, and more.
See Also​
- OpenAI Provider - The base provider that Azure shares configuration with
- Evaluating Assistants - Learn how to compare different models and instructions
- Azure OpenAI Assistant Examples - Complete working examples with various tool configurations
- Azure OpenAI Example - Example configurations including vision model support