Azure
The azure
provider is an interface to Azure. It shares configuration settings with the OpenAI provider.
Setup
There are two ways to authenticate with Azure:
Option 1: API Key Authentication
Set the AZURE_API_KEY
environment variable and configure your deployment:
providers:
- id: azure:chat:deploymentNameHere
config:
apiHost: 'xxxxxxxx.openai.azure.com'
Option 2: Client Credentials Authentication
Set the following environment variables or config properties:
AZURE_CLIENT_ID
/azureClientId
AZURE_CLIENT_SECRET
/azureClientSecret
AZURE_TENANT_ID
/azureTenantId
Optionally, you can also set:
AZURE_AUTHORITY_HOST
/azureAuthorityHost
(defaults to 'https://login.microsoftonline.com')AZURE_TOKEN_SCOPE
/azureTokenScope
(defaults to 'https://cognitiveservices.azure.com/.default')
Then configure your deployment:
providers:
- id: azure:chat:deploymentNameHere
config:
apiHost: 'xxxxxxxx.openai.azure.com'
Option 3: Azure CLI Authentication
Authenticate with Azure CLI using az login
before running promptfoo. This is the fallback option if the parameters for the previous options are not provided.
Optionally, you can also set:
- AZURE_TOKEN_SCOPE / azureTokenScope (defaults to 'https://cognitiveservices.azure.com/.default')
Then configure your deployment:
providers:
- id: azure:chat:deploymentNameHere
config:
apiHost: 'xxxxxxxx.openai.azure.com'
Provider Types
azure:chat:<deployment name>
- uses the given deployment (for chat endpoints such as gpt-35-turbo, gpt-4)azure:completion:<deployment name>
- uses the given deployment (for completion endpoints such as gpt-35-instruct)
Environment Variables
The Azure OpenAI provider supports the following environment variables:
Environment Variable | Config Key | Description | Required |
---|---|---|---|
AZURE_API_KEY | apiKey | Your Azure OpenAI API key | No* |
AZURE_API_HOST | apiHost | API host | No |
AZURE_API_BASE_URL | apiBaseUrl | API base URL | No |
AZURE_BASE_URL | apiBaseUrl | Alternative API base URL | No |
AZURE_DEPLOYMENT_NAME | - | Default deployment name | Yes |
AZURE_CLIENT_ID | azureClientId | Azure AD application client ID | No* |
AZURE_CLIENT_SECRET | azureClientSecret | Azure AD application client secret | No* |
AZURE_TENANT_ID | azureTenantId | Azure AD tenant ID | No* |
AZURE_AUTHORITY_HOST | azureAuthorityHost | Azure AD authority host | No |
AZURE_TOKEN_SCOPE | azureTokenScope | Azure AD token scope | No |
* Either AZURE_API_KEY
OR the combination of AZURE_CLIENT_ID
, AZURE_CLIENT_SECRET
, and AZURE_TENANT_ID
must be provided.
Note: For API URLs, you only need to set one of AZURE_API_HOST
, AZURE_API_BASE_URL
, or AZURE_BASE_URL
. If multiple are set, the provider will use them in that order of preference.
Default Deployment
If AZURE_DEPLOYMENT_NAME
is set, it will be automatically used as the default deployment when no other provider is configured. This makes Azure OpenAI the default provider when:
- No OpenAI API key is present (
OPENAI_API_KEY
is not set) - Azure authentication is configured (either via API key or client credentials)
AZURE_DEPLOYMENT_NAME
is set
For example, if you have these environment variables set:
AZURE_DEPLOYMENT_NAME=gpt-4
AZURE_API_KEY=your-api-key
AZURE_API_HOST=your-host.openai.azure.com
Or these client credential environment variables:
AZURE_DEPLOYMENT_NAME=gpt-4
AZURE_CLIENT_ID=your-client-id
AZURE_CLIENT_SECRET=your-client-secret
AZURE_TENANT_ID=your-tenant-id
AZURE_API_HOST=your-host.openai.azure.com
Then Azure OpenAI will be used as the default provider for all operations including:
- Dataset generation
- Grading
- Suggestions
- Synthesis
Because embedding models are distinct from text generation, to set an embedding provider you must specify AZURE_OPENAI_EMBEDDING_DEPLOYMENT_NAME
.
Note that any moderation tasks will still use the OpenAI API.
Configuration
The YAML configuration can override environment variables and set additional parameters:
providers:
- id: azure:chat:deploymentNameHere
config:
apiHost: 'xxxxxxxx.openai.azure.com'
# Authentication (Option 1: API Key)
apiKey: 'your-api-key'
# Authentication (Option 2: Client Credentials)
azureClientId: 'your-azure-client-id'
azureClientSecret: 'your-azure-client-secret'
azureTenantId: 'your-azure-tenant-id'
azureAuthorityHost: 'https://login.microsoftonline.com' # Optional
azureTokenScope: 'https://cognitiveservices.azure.com/.default' # Optional
# OpenAI parameters
temperature: 0.5
max_tokens: 1024
All other OpenAI provider environment variables and configuration properties are supported.
Using client credentials
To use client credentials for authentication with Azure, first install the peer dependency:
npm i @azure/identity
Then set the following configuration variables:
providers:
- id: azure:chat:deploymentNameHere
config:
apiHost: 'xxxxxxxx.openai.azure.com'
azureClientId: 'your-azure-client-id'
azureClientSecret: 'your-azure-client-secret'
azureTenantId: 'your-azure-tenant-id'
azureAuthorityHost: 'https://login.microsoftonline.com' # Optional
azureTokenScope: 'https://cognitiveservices.azure.com/.default' # Optional
These credentials will be used to obtain an access token for the Azure OpenAI API.
The azureAuthorityHost
defaults to 'https://login.microsoftonline.com' if not specified. The azureTokenScope
defaults to 'https://cognitiveservices.azure.com/.default', the scope required to authenticate with Azure Cognitive Services.
You must also install a peer dependency from Azure:
npm i @azure/identity
Model-graded tests
Model-graded assertions such as factuality
or llm-rubric
use OpenAI by default. If you are using Azure, you must override the grader to point to your Azure deployment.
The easiest way to do this for all your test cases is to add the defaultTest
property to your config:
defaultTest:
options:
provider:
id: azure:chat:gpt-4-deployment-name
config:
apiHost: 'xxxxxxx.openai.azure.com'
However, you can also do this for individual assertions:
# ...
assert:
- type: llm-rubric
value: Do not mention that you are an AI or chat assistant
provider:
id: azure:chat:xxxx
config:
apiHost: 'xxxxxxx.openai.azure.com'
Or individual tests:
# ...
tests:
- vars:
# ...
options:
provider:
id: azure:chat:xxxx
config:
apiHost: 'xxxxxxx.openai.azure.com'
assert:
- type: llm-rubric
value: Do not mention that you are an AI or chat assistant
Similarity
The similar
assertion type requires an embedding model such as text-embedding-ada-002
. Be sure to specify a deployment with an embedding model, not a chat model, when overriding the grader.
AI Services
You may also specify deployment_id
and dataSources
, used to integrate with the Azure AI Search API.
providers:
- id: azure:chat:deploymentNameHere
config:
apiHost: 'xxxxxxxx.openai.azure.com'
deployment_id: 'abc123'
dataSources:
- type: AzureCognitiveSearch
parameters:
endpoint: '...'
key: '...'
indexName: '...'
(The inconsistency in naming convention between deployment_id
and dataSources
reflects the actual naming in the Azure API.)
Configuration
These properties can be set under the provider config
key`:
General config
Name | Description |
---|---|
apiHost | API host. |
apiBaseUrl | Base URL of the API (used instead of host). |
apiKey | API key. |
apiVersion | API version. |
Azure-specific config
Name | Description |
---|---|
azureClientId | Azure identity client ID. |
azureClientSecret | Azure identity client secret. |
azureTenantId | Azure identity tenant ID. |
azureAuthorityHost | Azure identity authority host. |
azureTokenScope | Azure identity token scope. |
deployment_id | Azure cognitive services deployment ID. |
dataSources | Azure cognitive services parameter for specifying data sources. |
OpenAI config:
Name | Description |
---|---|
o1 | Set to true if your Azure deployment uses an o1 model. Since Azure allows custom model naming, this flag is required to properly handle o1 models which do not support certain parameters. |
max_completion_tokens | Maximum number of tokens to generate for o1 models. Only used when o1 is set to true . |
reasoning_effort | Allows you to control how long the o1 model thinks before answering, 'low', 'medium' or 'high'. Only used when o1 is set to true . |
temperature | Controls randomness of the output. Not supported for o1 models and will be automatically excluded when o1 is true . |
max_tokens | Maximum number of tokens to generate. Not supported for o1 models and will be automatically excluded when o1 is true . |
top_p | Controls nucleus sampling. |
frequency_penalty | Penalizes new tokens based on their frequency. |
presence_penalty | Penalizes new tokens based on their presence. |
best_of | Generates multiple outputs and chooses the best. |
functions | Specifies functions available for use. |
function_call | Controls automatic function calling. |
response_format | Specifies the format of the response. |
stop | Specifies stop sequences for the generation. |
passthrough | Anything under passthrough will be sent as a top-level request param |
Assistants
To eval an OpenAI assistant on Azure, first create a deployment for the assistant and create an assistant in the Azure web UI.
Then install the peer dependency locally:
npm i @azure/openai-assistants
Next, record the assistant ID and set up your provider like so:
providers:
- id: azure:assistant:asst_E4GyOBYKlnAzMi19SZF2Sn8I
config:
apiHost: yourdeploymentname.openai.azure.com
Be sure to replace the assistant ID and the name of your deployment.
Here's an example of a simple full assistant eval:
prompts:
- 'Write a tweet about {{topic}}'
providers:
- id: azure:assistant:asst_E4GyOBYKlnAzMi19SZF2Sn8I
config:
apiHost: yourdeploymentname.openai.azure.com
tests:
- vars:
topic: bananas
See the guide on How to eval OpenAI assistants for more information on how to compare different models, instructions, and more.