Skip to main content

Lambda Labs

This provider enables you to use Lambda Labs models through their Inference API.

Lambda Labs offers an OpenAI-compatible API for various large language models including Llama models, DeepSeek, Hermes, and more. You can use it as a drop-in replacement for applications currently using the OpenAI API.

Setup

Generate a Cloud API key from the Lambda Cloud dashboard. Then set the LAMBDA_API_KEY environment variable or pass it via the apiKey configuration field.

export LAMBDA_API_KEY=your_api_key_here

Or in your config:

providers:
- id: lambdalabs:chat:llama-4-maverick-17b-128e-instruct-fp8
config:
apiKey: your_api_key_here

Provider Format

The Lambda Labs provider supports the following formats:

  • lambdalabs:chat:<model name> - Uses any model with the chat completion interface
  • lambdalabs:completion:<model name> - Uses any model with the completion interface
  • lambdalabs:<model name> - Defaults to the chat completion interface

Available Models

The Lambda Labs Inference API officially supports these models:

  • deepseek-llama3.3-70b - DeepSeek Llama 3.3 70B model
  • deepseek-r1-671b - DeepSeek R1 671B model
  • hermes3-405b - Hermes 3 405B model
  • hermes3-70b - Hermes 3 70B model
  • hermes3-8b - Hermes 3 8B model
  • lfm-40b - Liquid Foundation Model 40B
  • llama-4-maverick-17b-128e-instruct-fp8 - Llama 4 Maverick 17B model with 128 expert MoE
  • llama-4-scout-17b-16e-instruct - Llama 4 Scout 17B model with 16 expert MoE
  • llama3.1-405b-instruct-fp8 - Llama 3.1 405B Instruct model
  • llama3.1-70b-instruct-fp8 - Llama 3.1 70B Instruct model
  • llama3.1-8b-instruct - Llama 3.1 8B Instruct model
  • llama3.1-nemotron-70b-instruct-fp8 - Llama 3.1 Nemotron 70B Instruct model
  • llama3.2-11b-vision-instruct - Llama 3.2 11B Vision model (supports images)
  • llama3.2-3b-instruct - Llama 3.2 3B Instruct model
  • llama3.3-70b-instruct-fp8 - Llama 3.3 70B Instruct model
  • qwen25-coder-32b-instruct - Qwen 2.5 Coder 32B Instruct model

To get the current list of available models, use the /models endpoint:

curl https://api.lambda.ai/v1/models -H "Authorization: Bearer your_api_key_here"

Parameters

The provider accepts all standard OpenAI parameters:

  • temperature - Controls randomness (0.0 to 1.0)
  • max_tokens - Maximum number of tokens to generate
  • top_p - Nucleus sampling parameter
  • stop - Sequences where the API will stop generating further tokens
  • frequency_penalty - Penalizes frequent tokens
  • presence_penalty - Penalizes new tokens based on presence in text

Example Configuration

# yaml-language-server: $schema=https://promptfoo.dev/config-schema.json
description: Lambda Labs model evaluation
prompts:
- You are an expert in {{topic}}. Explain {{question}} in simple terms.
providers:
- id: lambdalabs:chat:llama-4-maverick-17b-128e-instruct-fp8
config:
temperature: 0.7
max_tokens: 1024
- id: lambdalabs:chat:llama3.3-70b-instruct-fp8
config:
temperature: 0.7
max_tokens: 1024
tests:
- vars:
topic: quantum computing
question: Explain quantum entanglement in simple terms
assert:
- type: contains-any
value: ['entangled', 'correlated', 'quantum state']
- vars:
topic: machine learning
question: What is the difference between supervised and unsupervised learning?
assert:
- type: contains
value: 'labeled data'

See Also