Skip to main content

Python Provider

The Python provider enables you to create custom evaluation logic using Python scripts. This allows you to integrate Promptfoo with any Python-based model, API, or custom logic.

Common use cases:

  • Integrating proprietary or local models
  • Adding custom preprocessing/postprocessing logic
  • Implementing complex evaluation workflows
  • Using Python-specific ML libraries
  • Creating mock providers for testing

Prerequisites

Before using the Python provider, ensure you have:

  • Python 3.7 or higher installed
  • Basic familiarity with Promptfoo configuration
  • Understanding of Python dictionaries and JSON

Quick Start

Let's create a simple Python provider that echoes back the input with a prefix.

Step 1: Create your Python script

# echo_provider.py
def call_api(prompt, options, context):
"""Simple provider that echoes the prompt with a prefix."""
config = options.get('config', {})
prefix = config.get('prefix', 'Tell me about: ')

return {
"output": f"{prefix}{prompt}"
}

Step 2: Configure Promptfoo

# promptfooconfig.yaml
providers:
- id: 'file://echo_provider.py'

prompts:
- 'Tell me a joke'
- 'What is 2+2?'

Step 3: Run the evaluation

npx promptfoo@latest eval

That's it! You've created your first custom Python provider.

How It Works

Python providers use persistent worker processes. Your script is loaded once when the worker starts, not on every call. This makes subsequent calls much faster, especially for scripts with heavy imports like ML models.

When Promptfoo evaluates a test case with a Python provider:

  1. Promptfoo prepares the prompt based on your configuration
  2. Python Script is called with three parameters:
    • prompt: The final prompt string
    • options: Provider configuration from your YAML
    • context: Variables and metadata for the current test
  3. Your Code processes the prompt and returns a response
  4. Promptfoo validates the response and continues evaluation
┌─────────────┐     ┌──────────────┐     ┌─────────────┐
│ Promptfoo │────▶│ Your Python │────▶│ Your Logic │
│ Evaluation │ │ Provider │ │ (API/Model) │
└─────────────┘ └──────────────┘ └─────────────┘
▲ │
│ ▼
│ ┌──────────────┐
└────────────│ Response │
└──────────────┘

Basic Usage

Function Interface

Your Python script must implement one or more of these functions. Both synchronous and asynchronous versions are supported:

Synchronous Functions:

def call_api(prompt: str, options: dict, context: dict) -> dict:
"""Main function for text generation tasks."""
pass

def call_embedding_api(prompt: str, options: dict, context: dict) -> dict:
"""For embedding generation tasks."""
pass

def call_classification_api(prompt: str, options: dict, context: dict) -> dict:
"""For classification tasks."""
pass

Asynchronous Functions:

async def call_api(prompt: str, options: dict, context: dict) -> dict:
"""Async main function for text generation tasks."""
pass

async def call_embedding_api(prompt: str, options: dict, context: dict) -> dict:
"""Async function for embedding generation tasks."""
pass

async def call_classification_api(prompt: str, options: dict, context: dict) -> dict:
"""Async function for classification tasks."""
pass

Understanding Parameters

The prompt Parameter

The prompt can be either:

  • A simple string: "What is the capital of France?"
  • A JSON-encoded conversation: '[{"role": "user", "content": "Hello"}]'
def call_api(prompt, options, context):
# Check if prompt is a conversation
try:
messages = json.loads(prompt)
# Handle as chat messages
for msg in messages:
print(f"{msg['role']}: {msg['content']}")
except:
# Handle as simple string
print(f"Prompt: {prompt}")

The options Parameter

Contains your provider configuration and metadata:

{
"id": "file://my_provider.py",
"config": {
# Your custom configuration from promptfooconfig.yaml
"model_name": "gpt-3.5-turbo",
"temperature": 0.7,
"max_tokens": 100,

# Automatically added by promptfoo:
"basePath": "/absolute/path/to/config" # Directory containing your config (promptfooconfig.yaml)
}
}

The context Parameter

Provides information about the current test case:

{
"vars": {
# Variables used in this test case
"user_input": "Hello world",
"system_prompt": "You are a helpful assistant"
}
}

Return Format

Your function must return a dictionary with these fields:

def call_api(prompt, options, context):
# Required field
result = {
"output": "Your response here"
}

# Optional fields
result["tokenUsage"] = {
"total": 150,
"prompt": 50,
"completion": 100
}

result["cost"] = 0.0025 # in dollars
result["cached"] = False
result["logProbs"] = [-0.5, -0.3, -0.1]

# Error handling
if something_went_wrong:
result["error"] = "Description of what went wrong"

return result

Types

The types passed into the Python script function and the ProviderResponse return type are defined as follows:

class ProviderOptions:
id: Optional[str]
config: Optional[Dict[str, Any]]

class CallApiContextParams:
vars: Dict[str, str]

class TokenUsage:
total: int
prompt: int
completion: int

class ProviderResponse:
output: Optional[Union[str, Dict[str, Any]]]
error: Optional[str]
tokenUsage: Optional[TokenUsage]
cost: Optional[float]
cached: Optional[bool]
logProbs: Optional[List[float]]
metadata: Optional[Dict[str, Any]]

class ProviderEmbeddingResponse:
embedding: List[float]
tokenUsage: Optional[TokenUsage]
cached: Optional[bool]

class ProviderClassificationResponse:
classification: Dict[str, Any]
tokenUsage: Optional[TokenUsage]
cached: Optional[bool]

tip

Always include the output field in your response, even if it's an empty string when an error occurs.

Complete Examples

Example 1: OpenAI-Compatible Provider

# openai_provider.py
import os
import json
from openai import OpenAI

def call_api(prompt, options, context):
"""Provider that calls OpenAI API."""
config = options.get('config', {})

# Initialize client
client = OpenAI(
api_key=os.getenv('OPENAI_API_KEY'),
base_url=config.get('base_url', 'https://api.openai.com/v1')
)

# Parse messages if needed
try:
messages = json.loads(prompt)
except:
messages = [{"role": "user", "content": prompt}]

# Make API call
try:
response = client.chat.completions.create(
model=config.get('model', 'gpt-3.5-turbo'),
messages=messages,
temperature=config.get('temperature', 0.7),
max_tokens=config.get('max_tokens', 150)
)

return {
"output": response.choices[0].message.content,
"tokenUsage": {
"total": response.usage.total_tokens,
"prompt": response.usage.prompt_tokens,
"completion": response.usage.completion_tokens
}
}
except Exception as e:
return {
"output": "",
"error": str(e)
}

Example 2: Local Model with Preprocessing

# local_model_provider.py
import torch
from transformers import pipeline

# Initialize model once
generator = pipeline('text-generation', model='gpt2')

def preprocess_prompt(prompt, context):
"""Add context-specific preprocessing."""
template = context['vars'].get('template', '{prompt}')
return template.format(prompt=prompt)

def call_api(prompt, options, context):
"""Provider using a local Hugging Face model."""
config = options.get('config', {})

# Preprocess
processed_prompt = preprocess_prompt(prompt, context)

# Generate
result = generator(
processed_prompt,
max_length=config.get('max_length', 100),
temperature=config.get('temperature', 0.7),
do_sample=True
)

return {
"output": result[0]['generated_text'],
"cached": False
}

Example 3: Mock Provider for Testing

# mock_provider.py
import time
import random

def call_api(prompt, options, context):
"""Mock provider for testing evaluation pipelines."""
config = options.get('config', {})

# Simulate processing time
delay = config.get('delay', 0.1)
time.sleep(delay)

# Simulate different response types
if "error" in prompt.lower():
return {
"output": "",
"error": "Simulated error for testing"
}

# Generate mock response
responses = config.get('responses', [
"This is a mock response.",
"Mock provider is working correctly.",
"Test response generated successfully."
])

response = random.choice(responses)
mock_tokens = len(prompt.split()) + len(response.split())

return {
"output": response,
"tokenUsage": {
"total": mock_tokens,
"prompt": len(prompt.split()),
"completion": len(response.split())
},
"cost": mock_tokens * 0.00001
}

Configuration

Basic Configuration

providers:
- id: 'file://my_provider.py'
label: 'My Custom Provider' # Optional display name
config:
# Any configuration your provider needs
api_key: '{{ env.CUSTOM_API_KEY }}'
endpoint: https://api.example.com
model_params:
temperature: 0.7
max_tokens: 100

Using External Configuration Files

You can load configuration from external files:

providers:
- id: 'file://my_provider.py'
config:
# Load entire config from JSON
settings: file://config/model_settings.json

# Load from YAML with specific function
prompts: file://config/prompts.yaml

# Load from Python function
preprocessing: file://config/preprocess.py:get_config

# Nested file references
models:
primary: file://config/primary_model.json
fallback: file://config/fallback_model.yaml

Supported formats:

  • JSON (.json) - Parsed as objects/arrays
  • YAML (.yaml, .yml) - Parsed as objects/arrays
  • Text (.txt, .md) - Loaded as strings
  • Python (.py) - Must export a function returning config
  • JavaScript (.js, .mjs) - Must export a function returning config

Worker Configuration

Python providers use persistent worker processes that stay alive between calls, making subsequent calls faster.

Parallelism

Control the number of workers per provider:

providers:
# Default: 1 worker
- id: file://my_provider.py

# Multiple workers for parallel execution
- id: file://api_wrapper.py
config:
workers: 4

Or set globally:

export PROMPTFOO_PYTHON_WORKERS=4

When to use 1 worker (default):

  • GPU-bound ML models
  • Scripts with heavy imports (avoids loading them multiple times)
  • Conversational flows requiring session state

When to use multiple workers:

  • CPU-bound tasks where parallelism helps
  • Lightweight API wrappers

Note that global state is not shared across workers. If your script uses global variables for session management (common in conversational flows like red team evaluations), use workers: 1 to ensure all requests hit the same worker.

Timeouts

Default timeout is 2 minutes. Increase if needed:

providers:
- id: file://slow_model.py
config:
timeout: 300000 # milliseconds

Environment Configuration

Custom Python Executable

You can specify a custom Python executable in several ways:

Option 1: Per-provider configuration

providers:
- id: 'file://my_provider.py'
config:
pythonExecutable: /path/to/venv/bin/python

Option 2: Global environment variable

# Use specific Python version globally
export PROMPTFOO_PYTHON=/usr/bin/python3.11
npx promptfoo@latest eval

Python Detection Process

Promptfoo automatically detects your Python installation in this priority order:

  1. Environment variable: PROMPTFOO_PYTHON (if set)
  2. Provider config: pythonExecutable in your config
  3. Windows smart detection: Uses where python and filters out Microsoft Store stubs (Windows only)
  4. Smart detection: Uses python -c "import sys; print(sys.executable)" to find the actual Python path
  5. Fallback commands:
    • Windows: python, python3, py -3, py
    • macOS/Linux: python3, python

This enhanced detection is especially helpful on Windows where the Python launcher (py.exe) might not be available.

Environment Variables

# Use specific Python version
export PROMPTFOO_PYTHON=/usr/bin/python3.11

# Add custom module paths
export PYTHONPATH=/path/to/my/modules:$PYTHONPATH

# Enable Python debugging with pdb
export PROMPTFOO_PYTHON_DEBUG_ENABLED=true

# Run evaluation
npx promptfoo@latest eval

Advanced Features

Custom Function Names

Override the default function name:

providers:
- id: 'file://my_provider.py:generate_response'
config:
model: 'custom-model'
# my_provider.py
def generate_response(prompt, options, context):
# Your custom function
return {"output": "Custom response"}

Handling Different Input Types

def call_api(prompt, options, context):
"""Handle various prompt formats."""

# Text prompt
if isinstance(prompt, str):
try:
# Try parsing as JSON
data = json.loads(prompt)
if isinstance(data, list):
# Chat format
return handle_chat(data, options)
elif isinstance(data, dict):
# Structured prompt
return handle_structured(data, options)
except:
# Plain text
return handle_text(prompt, options)

Implementing Guardrails

def call_api(prompt, options, context):
"""Provider with safety guardrails."""

# Check for prohibited content
prohibited_terms = config.get('prohibited_terms', [])
for term in prohibited_terms:
if term.lower() in prompt.lower():
return {
"output": "I cannot process this request.",
"guardrails": {
"flagged": True,
"reason": "Prohibited content detected"
}
}

# Process normally
result = generate_response(prompt)

# Post-process checks
if check_output_safety(result):
return {"output": result}
else:
return {
"output": "[Content filtered]",
"guardrails": {"flagged": True}
}

Troubleshooting

Common Issues and Solutions

IssueSolution
spawn py -3 ENOENT errorsSet PROMPTFOO_PYTHON env var or use pythonExecutable in config
Python 3 not found errorsEnsure python command works or set PROMPTFOO_PYTHON
"Module not found" errorsSet PYTHONPATH or use pythonExecutable for virtual environments
Script not executingCheck file path is relative to promptfooconfig.yaml
No output visibleUse LOG_LEVEL=debug to see print statements
JSON parsing errorsEnsure prompt format matches your parsing logic
Timeout errorsOptimize initialization code, load models once

Debugging Tips

  1. Enable debug logging:

    LOG_LEVEL=debug npx promptfoo@latest eval
  2. Add logging to your provider:

    import sys

    def call_api(prompt, options, context):
    print(f"Received prompt: {prompt}", file=sys.stderr)
    print(f"Config: {options.get('config', {})}", file=sys.stderr)
    # Your logic here
  3. Test your provider standalone:

    # test_provider.py
    from my_provider import call_api

    result = call_api(
    "Test prompt",
    {"config": {"model": "test"}},
    {"vars": {}}
    )
    print(result)
  4. Use Python debugger (pdb) for interactive debugging:

    export PROMPTFOO_PYTHON_DEBUG_ENABLED=true

    With this environment variable set, you can use import pdb; pdb.set_trace() in your Python code to set breakpoints:

    def call_api(prompt, options, context):
    import pdb; pdb.set_trace() # Execution will pause here
    # Your provider logic
    return {"output": result}

    This allows interactive debugging directly in your terminal during evaluation runs.

Migration Guide

From HTTP Provider

If you're currently using an HTTP provider, you can wrap your API calls:

# http_wrapper.py
import requests

def call_api(prompt, options, context):
config = options.get('config', {})
response = requests.post(
config.get('url'),
json={"prompt": prompt},
headers=config.get('headers', {})
)
return response.json()

From JavaScript Provider

The Python provider follows the same interface as JavaScript providers:

// JavaScript
module.exports = {
async callApi(prompt, options, context) {
return { output: `Echo: ${prompt}` };
},
};
# Python equivalent
def call_api(prompt, options, context):
return {"output": f"Echo: {prompt}"}

Next Steps